Cost Reduction Strategies for Future Space Missions (From Technological innovation Perspective)

> February 8, 2017 Yasuaki Iwabuchi

Cost Reduction Strategies for Future Space Missions J February 8 , 2017 Yasuaki Iwabuchi

introduction

Japan Aerospace Exploration Agency (JAXA)

Research and Development Directorate

Specialty : Management , Planning

(regional development, venture, gender-equality $\circ \circ \circ$)

The University of Tokyo,

Graduate school of public policy(FY25~28)

Aoyama Gakuin University,

College of Economics/Engineering(FY25~28)

space craft/equipment : characteristic

\leq How difficult is it?>

large scale and complex system

ex) number of parts :

H-IIA/earth observation satellites \Rightarrow about 300 thousand

Japanese Experiment Module (JEM) \Rightarrow about 2 million

cf) passenger car \Rightarrow about 20~30 thousand

multi-product small volume production : one or two flight/year

- special environment (microgravity, ultra high vacuum, radiation_{ooo}) vibration, thermal, radiation, vacuum (outgas)
- difficulty in practical use test

difficult to repair

One item production (Not a Catalog item)

Cost Reduction Strategies for Future Space Missions」 February 8 , 2017 Yasuaki Iwabuchi

space craft/equipment : characteristic

one item production

- a typical 2 ton weighing satellite
- ⇒ half of development costs and material costs
- \Rightarrow from second machine : $\blacktriangle 15\%$ cost reduction

But : How scale is the product or development cost ?
⇒ (So to speak_{o o o}) Prophetic cost
(It is determined by the budget as a precedent)

<spacecraft \Rightarrow for cost reduction>

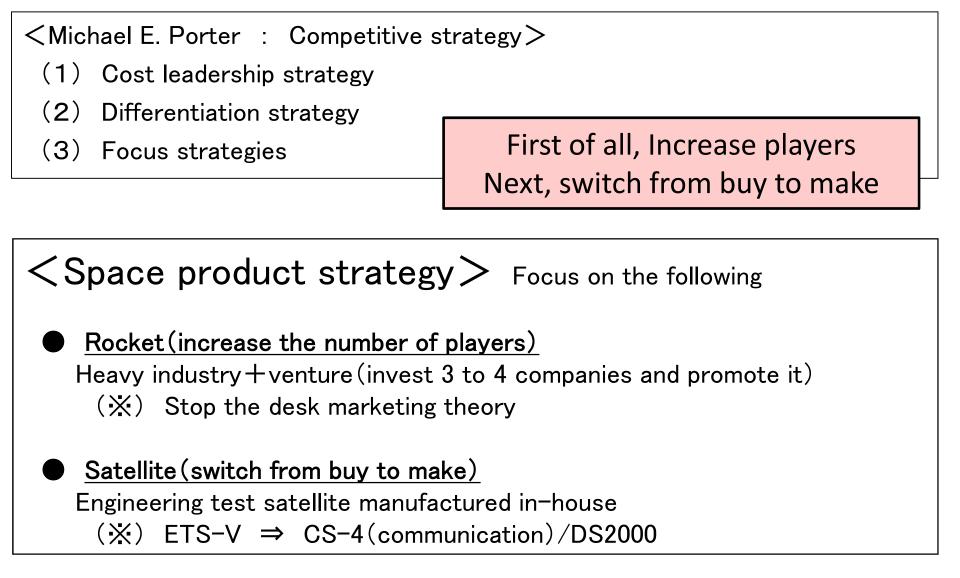
- development cost : <u>ability to estimate budget</u>
- material cost : review of parts for space and manufacturing facilities, domestic production and global strategy
- test cost : review of standard, facility and method
- ability to grasp, analyze and planning these as a system

<Current status>

The government, Large companies and Universities is the center in Japan

- Non-space organization ⇒ Companies require excessive costs
- Space organization
 - ⇒ It becomes technology center and cost-effectiveness is reduced
- \Rightarrow Collaboration required_{o o o}
- ⇒ However, cost information is overwhelmingly in companies, both of which generally have low ability to estimate costs.

From now on>


Efforts by JAXA, academia and venture companies (especially venture)

(In the case of Japan, it can also be viewed as a problem of the generation gap)

(X) Kenneth J. Arrow(Economist)

⇒ Venture companies tend to innovate more than large companies.

space product strategy

learning from ESA and NASA

- Japan : subsidy and special zone $_{\circ \ \circ \ \circ}$ (mind of mercy/handouts budget)
- ⇒ It is important to construct a platform structure in the medium to long term (management, policy, distribution and acquisition method, evaluation)
 It is not competitive in the center of large companies.
- ⇒ It is important not to compete but to build a competitive environment.

<esa< th=""><th>:</th><th>European</th><th>Space</th><th>Agency></th></esa<>	:	European	Space	Agency>
---	---	----------	-------	---------

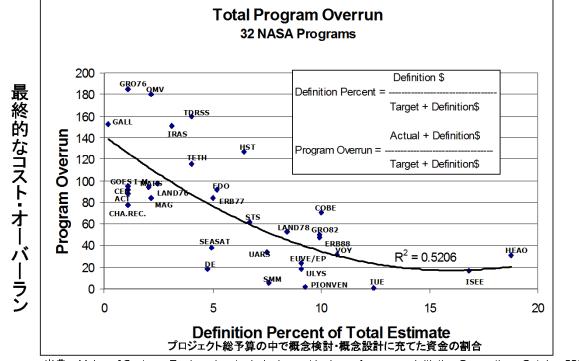
This is the front-loading

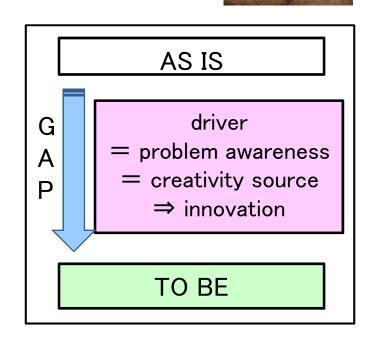
Invest in two companies in parallel until the preliminary design.

One company adopted is used for government satellites.

One company not adopted is used for private satellites.

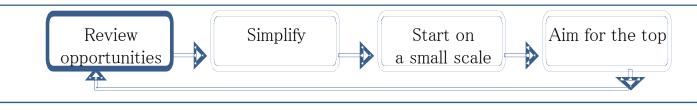
 \Rightarrow And it will reverse in 5 to 10 years.


(The reason is ?) The winner relaxes. The loser learns.


<NASA : National Aeronautics and Space Administration> SBIR/STTR(Small Business Innovation Research and Small Business Technology Transfer programs) : NASA has awarded Boeing Co. a contract and rival Space Exploration Technologies Corp.

Think about the End before the Beginning

Cost input effect to the initial stage of development


Leonardo da Vinci

出典: Value of Systems Engineering, technical report by Lean Aerospace Initiative Consortium, October 2004

Peter F. Drucker : Innovation process

Cost Reduction Strategies for Future Space Missions」February 8 , 2017 Yasuaki Iwabuchi

problem identification

There is no magic in the technology and cost of space development.

When emphasizing cheapness $_{\circ}$ $_{\circ}$ $_{\circ}$

 \Rightarrow Government support, technology transfer or development costs <u>are hidden</u>.

Ability to formulate a program/technology transfer know-how...

For that purpose :

(1) Having **problem** awareness and planning the **program**.

(2) Abandoning recourse loan(mortgage) and conservatism(\Rightarrow <u>non-recourse</u>)

(3) <u>Going out</u> without staying inside.

- between companies, space/non space sector and academia
- international cooperation
- traditional space technology and state-of-the-art technology
- <u>component</u> ⇒ sub-system/system
- large scale, heavy industry ⇒ small scale, IT/service industry

A lot of players are necessary for space development. Personal and organization brainwashing/inward mind is a problem.

Cost Reduction Strategies for Future Space Missions J February 8 , 2017 Yasuaki Iwabuchi

Redefine the cost ! Change your mind !

Japanese can not put economic theory into practical use.

Cost ≠ Cash

(Japanese have not won the Nobel Prize in economics.)

(1) opportunity loss (current-value accounting, management accounting)

(2) loss cut (difference between research cost and development cost)

(3) discount rate (periodically, the previous example \rightarrow rather bad !)

<Redefine the cost> He did it at the cost of his life !

Cost=decision making (differences in position and choice of decision makers)

To reduce costs, we need commitment (game theory) from larger decision makers. In addition, motivation, prospect/expectation and portfolio of risk diversification is

necessary.

After all, management is important, and you need an understanding

- strengths and weaknesses(Peter F. Drucker)
- positioning(Michael E. Porter)
 business analysis and roadmap

Edward J. Hoffman (NASA's Chief Knowledge Officer)

: All system engineers should be cost engineers.

Cost Reduction Strategies for Future Space Missions J February 8 , 2017 Yasuaki Iwabuchi